Filters
Question type

Given the following premises: 1) ∼(∼H • J) 2) K ∨ (∼H • J) 3) (M ∨ M) ⊃ (∼H • J)


A) (K ∨ ∼H) • (K ∨ J) 2, Dist
B) ∼K ⊃ (∼H • J) 2, Impl
C) K 1, 2, DS
D) H ∨ ∼J 1, DM
E) ∼M 1, 3, MT

F) C) and E)
G) A) and B)

Correct Answer

verifed

verified

Use natural deduction to prove the following logical truth: [(P ∨ Q) ⊃ (R • T)] ⊃ (P ⊃ R)

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove the logical truth of `[(P ∨ Q) ...

View Answer

Given the following premises: 1) (L ⊃ M) • (F ⊃ J) 2) M ⊃ ∼(F ∨ L) 3) F ∨ L


A) L ⊃ ∼(F ∨ L) 1, 2, HS
B) M ∨ J 1, 3, CD
C) L ⊃ M 1, Simp
D) ∼M 2, 3, MT
E) M ⊃ (∼F ∨ ∼L) 2, DM

F) All of the above
G) B) and C)

Correct Answer

verifed

verified

Use an ordinary proof (not conditional or indirect proof): 1.M ⊃ (R • E) 2.(E ∨ H) ⊃ G / M ⊃ G

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove that M ⊃ G using an ordinary pr...

View Answer

Given the following premises: 1) N ⊃ ∼(S ∨ K) 2) S ∨ K 3) S ⊃ (R • Q)


A) S 2, Simp
B) (S ∨ K) ∨ N 2, Add
C) ∼S ⊃ K 2, Impl
D) ∼N 1, 2, MT
E) (S ⊃ R) ⊃ Q 3, Exp

F) B) and E)
G) B) and D)

Correct Answer

verifed

verified

Given the following premises: 1) F ⊃ J 2) A ⊃ (F • J) 3) A • (Q ∨ N)


A) J ⊃ F 1, Com
B) A • (N ∨ Q) 3, Com
C) A ⊃ J 1, 2, HS
D) (A ⊃ F) • (A ⊃ J) 2, Dist
E) (A • Q) ∨ N 3, Assoc

F) D) and E)
G) B) and E)

Correct Answer

verifed

verified

Given the following premises: 1) (K • ∼T) ∨ (K • ∼H) 2) ∼M ⊃ (K • ∼H) 3) ∼(K • ∼H)


A) ∼K ∨ H 3, DM
B) K • ∼T 1, 3, DS
C) K • (∼T ∨ ∼H) 1, Dist
D) M 2, 3, MT
E) (∼M • K) ⊃ ∼H 2, Exp

F) C) and E)
G) A) and C)

Correct Answer

verifed

verified

Use conditional proof: 1.S ⊃ (B ⊃ T) 2.N ⊃ (T ⊃ ∼B) / (S • N) ⊃ ∼B

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove the argument using conditional ...

View Answer

Use an ordinary proof (not conditional or indirect proof): 1.∼N ⊃ (∼R ⊃ C) 2.R ⊃ N 3.∼C / N

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove that N is true using an ordinar...

View Answer

Given the following premises: 1) (J • ∼N) ∨ T 2) ∼(J • ∼N) 3) ∼T


A) T 1, 2, DS
B) ∼J ∨ N 2, DM
C) J • ∼N 1, 3, DS
D) J • (∼N ∨ T) 1, Assoc
E) ∼J 2, Simp

F) C) and D)
G) A) and E)

Correct Answer

verifed

verified

Given the following premises: 1) N ∨ C 2) (N ∨ C) ⊃ (F ⊃ C) 3) ∼C


A) F ⊃ C 1, 2, MP
B) N 1, 3, DS
C) ∼F 2, 3, MT
D) ∼N 1, 3, MT
E) ∼C • R 3, Add

F) A) and E)
G) C) and D)

Correct Answer

verifed

verified

Given the following premises: 1) D ⊃ (∼A ∨ ∼A) 2) ∼A ⊃ (R • M) 3) ∼R • ∼M


A) D ⊃ ∼A 1, Taut
B) D ⊃ A 1, DN
C) D ⊃ (R • M) 1, 2, HS
D) ∼∼A 2, 3, MT
E) ∼(R • M) 3, DM

F) C) and E)
G) B) and D)

Correct Answer

verifed

verified

Given the following premises: 1) F ∨ S 2) ∼S 3) (S ⊃ W) • (F ⊃ N)


A) F 1, 2, DS
B) S ⊃ W 3, Simp
C) ∼F ⊃ S 1, Impl
D) F ⊃ N 3, Simp
E) W ∨ N 1, 3, CD

F) B) and C)
G) C) and D)

Correct Answer

verifed

verified

Given the following premises: 1) ∼∼N 2) K ⊃ ∼N 3) ∼N ∨ (K • S)


A) (∼N ∨ K) • S 3, Assoc
B) K 1, 2, MT
C) N ⊃ ∼K 2, Trans
D) K • S 1, 3, DS
E) (∼N • K) ∨ (∼N • S) 3, Dist

F) A) and E)
G) B) and E)

Correct Answer

verifed

verified

Given the following premises: 1) H ∨ M 2) E ⊃ ∼(H ∨ M) 3) (H ⊃ D) • (M ⊃ O)


A) ∼H ⊃ M 1, Impl
B) ∼E 1, 2, MT
C) H 1, Simp
D) M ⊃ O 3, Simp
E) D ∨ O 1, 3, CD

F) A) and C)
G) A) and E)

Correct Answer

verifed

verified

Given the following premises: 1) B 2) ∼R ⊃ K 3) B ⊃ (K ⊃ E)


A) (B ⊃ K) ⊃ E 3, Assoc
B) ∼R ⊃ E 2, 3, HS
C) R ∨ K 2, Impl
D) K ⊃ E 1, 3, MP
E) B • N 1, Add

F) C) and D)
G) None of the above

Correct Answer

verifed

verified

Given the following premises: 1) ∼(G • F) 2) ∼F ⊃ H 3) (G ⊃ ∼F) • (∼F ⊃ G)


A) ∼F ⊃ G 3, Simp
B) G ⊃ H 2, 3, HS
C) F ∨ H 2, Impl
D) G ≡ ∼F 3, Equiv
E) ∼G 1, Simp

F) B) and C)
G) B) and E)

Correct Answer

verifed

verified

Use an ordinary proof (not conditional or indirect proof): 1.F ⊃ (J ∨ ∼F) 2.J ⊃ (L ∨ ∼J) / F ⊃ L

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove F ⊃ L using an ordinary proof w...

View Answer

Given the following premises: 1) ∼E ⊃ P 2) ∼P 3) ∼(P ∨ ∼H)


A) ∼H 2, 3, DS
B) ∼P • ∼(P ∨ ∼H) 2, 3, Conj
C) ∼P • H 3, DM
D) E 1, 2, MT
E) ∼P ⊃ E 1, Trans

F) B) and E)
G) B) and D)

Correct Answer

verifed

verified

Given the following premises: 1) T ∨ S 2) A ⊃ T 3) A • (∼T • S)


A) ∼T 3, Simp
B) (A • ∼T) • S 3, Assoc
C) T 2, 3, MP
D) T ⊃ A 2, Com
E) S 1, 3, DS

F) C) and D)
G) A) and B)

Correct Answer

verifed

verified

Showing 41 - 60 of 76

Related Exams

Show Answer